COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW.

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphatic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

REQUIRED ATTACHMENTS

1. Fire Directory Listing Page
2. From Notice of Acceptance:
 - Front Page
 - Specific System Description
 - Specific System Limitations
 - General Limitations
 - Applicable Detail Drawings

3. Design Calculations per Chapter 16, or if applicable, RAS 127 or RAS 128
4. Other Component Notice of Acceptances
5. Municipal Permit Application
6. Owners Notification for Roofing Considerations (Re-roofing Only)
7. Any Required Roof Testing/Calculation Documentation

Any other additional data reasonably required by the Building Official to determine the integrity of the roofing system.
Section A (General Information)

Master Permit No.____________________ Process No.____________________________
Contractor’s Name___
Job Address__

Roof Category

- ___ Low slope ___ Mechanically Fastened Tile ___ Mortar/Adhesive Set Tile
- ___ Asphalitic Shingles ___ Metal Panel/Shingles ___ Wood Shingles/Shakes
- ___ Prescriptive BUR-RAS 150

Are there Gas Vent Stacks?
- Yes ❑ No ❑

Type: Natural ❑ LPGX ❑

Roof Type

- ___ New Roof ___ Re-roofing ___ Recovering ___ Repair ___ Maintenance

Roof System Information

<table>
<thead>
<tr>
<th>Low Slope Roof Area (SF)</th>
<th>Steep Sloped Roof Area (SF)</th>
<th>Total (SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________________________</td>
<td>__________________________</td>
<td>__________</td>
</tr>
</tbody>
</table>

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels; clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Sloped Roof System)

Fill in the specific Roof Assembly Components and Identify Manufacturer (If a component is not used, identify as “NA”)

System Manufacturer:__________________________

NOA No:__________________________

Design Wind Pressures, From RAS 128 or Calculations:
Pmax1:______ Pmax 2:______ Pmax 3:______

Maximum Design Pressure, From the Specific NOA System:__________________________

Deck:
Type:__________________________
Gauge/Thickness:__________________________
Slope:__________________________

Anchor/Base Sheet & No. of Ply(s):__________________________

Anchor/Base Sheet Fastener/Bonding Material:__________________________

Insulation Base Layer:__________________________

Base Insulation Size and Thickness:__________________________

Base Insulation Fastener/Bonding Material:__________________________

Top Insulation Layer:__________________________

Top Insulation Size and Thickness:__________________________

Top Insulation Fastener/Bonding Material:__________________________

Base Sheet(s) & No. of Ply(s):__________________________

Base Sheet Fastener/Bonding Material:__________________________

Ply Sheet(s) & No. of Ply(s):__________________________

Ply Sheet Fastener/Bonding Material:__________________________

Top Ply:__________________________

Top Ply Fastener/Bonding Material:__________________________

Surfacing:__________________________

Fastener Spacing for Anchor/Base Sheet Attachment:

Field:______”o/c @ laps & ______ rows @ ______”o/c

Perimeter:______ ”o/c @ laps & ______ rows @ ______”o/c

Corner:______ ”o/c @ laps & ______ rows @ ______”o/c

Number of Fasteners Per Insulation Board

Field______ Perimeter_______ Corner_______

Illustrate Components Noted and Details As Applicable:
Wood-blocking, Gutter, Edge Terminations, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter-flashing, Coping, Etc.

Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing

Or: Submit Manufacturers Details that Comply with RAS-111 and Chapter 16

Parapet Wall Height:______ Ft.

Mean Roof Height:______ Ft.
Section D (Steep Sloped Roof System)

Roof System Manufacturer:__

Notice of Acceptance Number:__

Minimum Design Wind Pressures, If Applicable (from RAS 127 or Calculations):

P 1: _____________ P2:_____________ P3:_____________

Maximum Design Wind Pressure
(From the NOA Specific System):______________________________________

Method of tile attachment:__

Steep Sloped Roof System Description

Deck Type: __

Underlayment Type:___

Insulation:___

Fire Barrier:__

Fastener Type
&Spacing:_____________________________

Adhesive Type:___

Type Cap
Sheet:__

Roof
Covering:___

Type & Size Drip
Edge:___

Ridge Ventilation?

Roof Slope
_____:12

Mean Roof Height:

SECTION E (Tile Calculations)

For moment based tile systems, choose either Method 1 or 2. Compare the values for \(M_r \) with the values from \(M_f \). If the \(M_f \) values are greater than or equal to the \(M_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 “Moment Based Tile Calculations Per RAS 127”

\[
P_1: \text{_______ x } \lambda \text{ _______ = _______)} - \text{Mg: _______ = } M_{r1}: \text{_______} \quad \text{NOA } M_f: \text{__________}
\]

\[
P_2: \text{_______ x } \lambda \text{ _______ = _______)} - \text{Mg: _______ = } M_{r2}: \text{_______} \quad \text{NOA } M_f: \text{__________}
\]

\[
P_3: \text{_______ x } \lambda \text{ _______ = _______)} - \text{Mg: _______ = } M_{r3}: \text{_______} \quad \text{NOA } M_f: \text{__________}
\]

Method 2 “Simplified Tile Calculations Per Table Below”

Required Moment of Resistance \((M_r) \) From Table Below: _______ \quad \text{NOA } M_f: \text{__________}

<table>
<thead>
<tr>
<th>Mean Roof Height</th>
<th>15’</th>
<th>20’</th>
<th>25’</th>
<th>30’</th>
<th>40’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:12</td>
<td>34.4</td>
<td>36.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td>3:12</td>
<td>32.2</td>
<td>34.4</td>
<td>36.0</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td>5:12</td>
<td>28.4</td>
<td>30.1</td>
<td>31.6</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td>7:12</td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*This table must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For uplift based tile systems use Method 3. Compare the values for \(F’ \) with the values for \(F_r \). If the \(F’ \) values are greater than or equal to the \(F_r \) values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 “Uplift Based Tile Calculations Per RAS 127”

\[
(P_1: \text{_______ x } l: \text{_______ = _______ x w:_______)} - \text{w: _______ x } \cos \theta: \text{_______ = } F_{r1}: \text{_______} \quad \text{NOA } F’: \text{_______}
\]

\[
(P_2: \text{_______ x } l: \text{_______ = _______ x w:_______)} - \text{w: _______ x } \cos \theta: \text{_______ = } F_{r2}: \text{_______} \quad \text{NOA } F’: \text{_______}
\]

\[
(P_3: \text{_______ x } l: \text{_______ = _______ x w:_______)} - \text{w: _______ x } \cos \theta: \text{_______ = } F_{r3}: \text{_______} \quad \text{NOA } F’: \text{_______}
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P1 or P2 or P3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by a P.E. based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>(\theta)</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>(\lambda)</td>
<td>NOA</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>(M_g)</td>
<td>NOA</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>(M_f)</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>(M_r)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>(F’)</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>(F_r)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>NOA</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>l = length \ w = width</td>
<td>NOA</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the Building Official at the time of permit application.
SECTION 1524
HIGH VELOCITY HURRICANE ZONES-- REQUIRED OWNERS NOTIFICATION FOR ROOFING CONSIDERATIONS

1524.1 Scope. As it pertains to this section, it is the responsibility of the roofing contractor to provide the owner with the required roofing permit, and to explain to the owner the content of this section. The provisions of Chapter 15 of the Florida Building Code, Building govern the minimum requirements and standards of the industry for roofing system installations. Additionally, the following items should be addressed as part of the agreement between the owner and the contractor. The owner's initial in the designated space indicates that the item has been explained.

1. Aesthetics-workmanship: The workmanship provisions of Chapter 15 (High Velocity Hurricane Zone) are for the purpose of providing that the roofing system meets the wind resistance and water intrusion performance standards. Aesthetics (appearance) are not a consideration with respect to workmanship provisions. Aesthetic issues such as color or architectural appearance, that are not part of a zoning code, should be addressed as part of the agreement between the owner and the contractor.

2. Renailing wood decks: When replacing roofing, the existing wood roof deck may have to be renailed in accordance with the current provisions of Chapter 16 (High Velocity Hurricane Zones) of the Florida Building Code. (The roof deck is usually concealed prior to removing the existing roof system).

3. Common roofs: Common roofs are those which have no visible delineation between neighboring units (i.e. townhouses, condominiums, etc.). In buildings with common roofs, the roofing contractor and/or owner should notify the occupants of adjacent units of roofing work to be performed.

4. Exposed ceilings: Exposed, open beam ceilings are where the underside of the roof decking can be viewed from below. The owner may wish to maintain the architectural appearance; therefore, roofing nail penetrations of the underside of the decking may not be acceptable. The owner provides the option of maintaining this appearance.

5. Ponding water: The current roof system and/or deck of the building may not drain well and may cause water to pond (accumulate) in low-lying areas of the roof. Ponding can be an indication of structural distress and may require the review of a professional structural engineer. Ponding may shorten the life expectancy and performance of the new roofing system. Ponding conditions may not be evident until the original roofing system is removed. Ponding conditions should be corrected.

6. Overflow scuppers (wall outlets): It is required that rainwater flows off so that the roof is not overloaded from a buildup of water. Perimeter/edge walls or other roof extensions may block this discharge if overflow scuppers (wall outlets) are not provided. It may be necessary to install overflow scuppers in accordance with the requirements of: Chapter 15 and 16 herein and the Florida Building Code, Plumbing.

7. Ventilation: Most roof structures should have some ability to vent natural airflow through the interior of the structural assembly (the building itself). The existing amount of attic ventilation shall not be reduced. Exception: Attic spaces, designed by a Florida-licensed engineer or registered architect to eliminate the attic venting, venting shall not be required.

Owner's/Agent's Signature: ____________________________ Date: _____/_____/_____
Contractor's Signature: ____________________________ Permit Number: ______________________
Property Address: ____________________________